Zadanie #512

Rok: 2012

Matura: Egzamin poprawkowy

Poziom matury: Podstawowy

Numer w arkuszu: 30

Punkty: 2

Arkusz maturalny matematyka Cały arkusz

Opis zadania

Jest to zadanie maturalne, które pochodzi z egzaminu maturalnego z 2012 roku poziom podstawowy, za które można było uzyskać 2 punkty. W zadaniu poruszane są takie zagadnienia jak: wysokość trójkąta, pole równoległoboku.

Treść zadania:

Dany jest równoległobok \(ABCD\). Na przedłużeniu przekątnej \(AC\) wybrano punkt \(E\) tak, że \( \left| CE \right|=\frac{1}{2}\left| AC \right| \) (zobacz rysunek). Uzasadnij, że pole równoległoboku \(ABCD\) jest cztery razy większe od pola trójkąta \(DCE \).

równoległobok

Wskazówka do zadania

Podpowiedź do zadania

Należy dorysować wysokość trójkąta \(ADC\) opuszczoną z wierzchołka \(D\).

Więcej wzorów znajdziesz na stronie Wzory maturalne - planimetria.

kursy-maturalne-matematyka

Oceń użyteczność zadania:

Chcielibyśmy wiedzieć, jak oceniasz to zadanie pod względem użyteczności w nauce i pomocy w zrozumieniu tematu. Prosimy, nie oceniaj trudności samego zadania, ale skup się na tym, jak pomogło Ci ono w nauce.

0 votes, average: 0,00 out of 50 votes, average: 0,00 out of 50 votes, average: 0,00 out of 50 votes, average: 0,00 out of 50 votes, average: 0,00 out of 5

Liczba ocen: 0, średnia ocena: 0,00
Aby móc wystawić ocenę musisz być zalogowany.

Loading...

Ostatnio dodane na stronie

Wierzymy, że najlepszym sposobem nauki jest praktyka. Dlatego stale aktualizujemy naszą bazę zadań, abyś miał dostęp do najnowszych i najbardziej aktualnych treści. Oto kilka z naszych najnowszych zadań maturalnych, które pomogą Ci być o krok przed innymi.

Zadanie #618
Zadanie #618
2021
Zadanie #617
Zadanie #617
2021
Zadanie #616
Zadanie #616
2021
Zadanie #615
Zadanie #615
2021
Zadanie #614
Zadanie #614
2021
Zadanie #613
Zadanie #613
2021