Zadanie #24

Rok: 2022

Matura: Egzamin główny

Poziom matury: Rozszerzony

Numer w arkuszu: 15

Punkty: 7

Arkusz maturalny matematyka Cały arkusz

Opis zadania

Jest to zadanie maturalne, które pochodzi z egzaminu maturalnego z 2022 roku poziom rozszerzony, za które można było uzyskać 7 punktów. W zadaniu poruszane są takie zagadnienia jak: dziedzina funkcji, pole trójkąta, długość odcinka, wzory funkcji, pochodne funkcji, miejsca zerowe, monotoniczność funkcji.

Treść zadania:

Rozpatrujemy wszystkie trójkąty równoramienne o obwodzie równym \(18\).

a) Wykaż, że pole \(P\) każdego z tych trójkątów, jako funkcja długości \(b\) ramienia, wyraża się wzorem \(P(b)=\frac{(18-2 b) \cdot \sqrt{18 b-81}}{2}\).

b) Wyznacz dziedzinę funkcji \(P\).

c) Oblicz długości boków tego z rozpatrywanych trójkątów, który ma największe pole.

Wskazówka do zadania

Podpowiedź do zadania

a) Wykorzystujemy fakt, że znamy obwód - podstawę możemy zapiać jako \( 2a \) i podstawiając do wzoru na obwód zapisujemy \( a \) w zależności od \( b \). Następnie możemy korzystając z Tw. Pitagorasa, aby doprowadzić równanie do odpowiedniej postaci.

b) Jeśli wprowadzimy odpowiednie założenia, pamiętajmy, że bok nie może być ujemny i musi mieć odpowiednią długość.

c) Wykorzystujemy wzór z treści zadania oraz wyznaczone \( a \) w zależności od \( b \), w wyniku czego powstanie nam równanie kwadratowe.

kursy-maturalne-matematyka

Oceń użyteczność zadania:

Chcielibyśmy wiedzieć, jak oceniasz to zadanie pod względem użyteczności w nauce i pomocy w zrozumieniu tematu. Prosimy, nie oceniaj trudności samego zadania, ale skup się na tym, jak pomogło Ci ono w nauce.

0 votes, average: 0,00 out of 50 votes, average: 0,00 out of 50 votes, average: 0,00 out of 50 votes, average: 0,00 out of 50 votes, average: 0,00 out of 5

Liczba ocen: 0, średnia ocena: 0,00
Aby móc wystawić ocenę musisz być zalogowany.

Loading...

Ostatnio dodane na stronie

Wierzymy, że najlepszym sposobem nauki jest praktyka. Dlatego stale aktualizujemy naszą bazę zadań, abyś miał dostęp do najnowszych i najbardziej aktualnych treści. Oto kilka z naszych najnowszych zadań maturalnych, które pomogą Ci być o krok przed innymi.

Zadanie #618
Zadanie #618
2021
Zadanie #617
Zadanie #617
2021
Zadanie #616
Zadanie #616
2021
Zadanie #615
Zadanie #615
2021
Zadanie #614
Zadanie #614
2021
Zadanie #613
Zadanie #613
2021