Zadanie #1489

Rok: 2011

Matura: Egzamin główny

Poziom matury: Podstawowy

Numer w arkuszu: 29

Punkty: 2

Arkusz maturalny matematyka Cały arkusz

Opis zadania

Jest to zadanie maturalne otwarte, które pochodzi z egzaminu maturalnego z 2011 roku poziom podstawowy, za które można było uzyskać 2 punkty. W zadaniu poruszane są takie zagadnienia jak: zależności między kątami w czworokącie.

Treść zadania:

Dany jest czworokąt \( ABCD \), w którym \( AB \parallel CD \). Na boku \( BC \) wybrano taki punkt \( E \), że \( \left | EC \right |=\left | CD \right | \) i \( \left | EB \right |=\left | BA \right | \). Wykaż , że kąt \( AED \) jest prosty.

Wskazówka do zadania

Podpowiedź do zadania

Dorysowujemy prostą równoległą do \( AB \) i \( CD \) oraz wykorzystujemy zależności między kątami.

Zależności między kątami

Zobacz więcej tutaj: Wzory maturalne - Planimetria


Ostatnio dodane na stronie

Wierzymy, że najlepszym sposobem nauki jest praktyka. Dlatego stale aktualizujemy naszą bazę zadań, abyś miał dostęp do najnowszych i najbardziej aktualnych treści. Oto kilka z naszych najnowszych zadań maturalnych, które pomogą Ci być o krok przed innymi.

Zadanie #1557
Zadanie #1557
Stereometria 2023
Zadanie #1556
Zadanie #1556
Kombinatoryka 2023
Zadanie #1555
Zadanie #1555
Statystyka 2023
Zadanie #1554
Zadanie #1554
Stereometria 2023
Zadanie #1553
Zadanie #1553
Geometria analityczna 2023
Zadanie #1552
Zadanie #1552
Geometria analityczna 2023