Zadanie #1639

Rok: 2018

Matura: Egzamin poprawkowy

Poziom matury: Podstawowy

Numer w arkuszu: 29

Punkty: 2

Arkusz maturalny matematyka Cały arkusz

Opis zadania

Jest to zadanie otwarte, które pochodzi z egzaminu maturalnego z 2018 roku poziom podstawowy, za które można było uzyskać 2 punkty. W zadaniu poruszane są takie zagadnienia jak: wzory skróconego mnożenia.

Treść zadania:

Wykaż, że jeżeli \(a\) i \(b\) są liczbami rzeczywistymi dodatnimi, to \((a+b)\left(\frac{1}{a}+\frac{1}{b}\right) \geqslant 4\).

Wskazówka do zadania

Podpowiedź do zadania

Kwadrat dowolnej liczby jest zawsze nieujemny.

Więcej znajdziesz na stronie: Wzory maturalne - wzory skróconego mnożenia.

kursy-maturalne-matematyka

Oceń użyteczność zadania:

Chcielibyśmy wiedzieć, jak oceniasz to zadanie pod względem użyteczności w nauce i pomocy w zrozumieniu tematu. Prosimy, nie oceniaj trudności samego zadania, ale skup się na tym, jak pomogło Ci ono w nauce.

0 votes, average: 0,00 out of 50 votes, average: 0,00 out of 50 votes, average: 0,00 out of 50 votes, average: 0,00 out of 50 votes, average: 0,00 out of 5

Liczba ocen: 0, średnia ocena: 0,00
Aby móc wystawić ocenę musisz być zalogowany.

Loading...

Ostatnio dodane na stronie

Wierzymy, że najlepszym sposobem nauki jest praktyka. Dlatego stale aktualizujemy naszą bazę zadań, abyś miał dostęp do najnowszych i najbardziej aktualnych treści. Oto kilka z naszych najnowszych zadań maturalnych, które pomogą Ci być o krok przed innymi.

Zadanie #1681
Zadanie #1681
2018
Zadanie #1680
Zadanie #1680
2018
Zadanie #1679
Zadanie #1679
2018
Zadanie #1678
Zadanie #1678
2018
Zadanie #1677
Zadanie #1677
2018
Zadanie #1676
Zadanie #1676
2018