Zadanie #40

Rok: 2021

Matura: Egzamin główny

Poziom matury: Rozszerzony

Numer w arkuszu: 12

Punkty: 5

Arkusz maturalny matematyka Cały arkusz

Opis zadania

Jest to zadanie maturalne, które pochodzi z egzaminu maturalnego z 2021 roku poziom rozszerzony, za które można było uzyskać 5 punktów. W zadaniu poruszane są takie zagadnienia jak: wzór na cosinus sumy, wykresy funkcji trygonometrycznych.

Treść zadania:

Rozwiąż równanie \(\cos 2 x=\frac{\sqrt{2}}{2}(\cos x-\sin x) \) w przedziale \(\langle 0, \pi\rangle\).

Wskazówka do zadania

Podpowiedź do zadania

Skorzystamy ze wzoru na cosinus sumy:

\(\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta\)

Dane równanie możemy więc zapisać w postaci:

\(\cos 2 x=\frac{\sqrt{2}}{2} \cos x-\frac{\sqrt{2}}{2} \sin x\)

Więcej wzorów znajdziesz na stronie Wzory maturalne - trygonometria.

kursy-maturalne-matematyka

Oceń użyteczność zadania:

Chcielibyśmy wiedzieć, jak oceniasz to zadanie pod względem użyteczności w nauce i pomocy w zrozumieniu tematu. Prosimy, nie oceniaj trudności samego zadania, ale skup się na tym, jak pomogło Ci ono w nauce.

0 votes, average: 0,00 out of 50 votes, average: 0,00 out of 50 votes, average: 0,00 out of 50 votes, average: 0,00 out of 50 votes, average: 0,00 out of 5

Liczba ocen: 0, średnia ocena: 0,00
Aby móc wystawić ocenę musisz być zalogowany.

Loading...

Ostatnio dodane na stronie

Wierzymy, że najlepszym sposobem nauki jest praktyka. Dlatego stale aktualizujemy naszą bazę zadań, abyś miał dostęp do najnowszych i najbardziej aktualnych treści. Oto kilka z naszych najnowszych zadań maturalnych, które pomogą Ci być o krok przed innymi.

Zadanie #618
Zadanie #618
2021
Zadanie #617
Zadanie #617
2021
Zadanie #616
Zadanie #616
2021
Zadanie #615
Zadanie #615
2021
Zadanie #614
Zadanie #614
2021
Zadanie #613
Zadanie #613
2021