Zadanie #644

Rok: 2020

Matura: Egzamin główny

Poziom matury: Podstawowy

Numer w arkuszu: 33

Punkty: 4

Arkusz maturalny matematyka Cały arkusz

Opis zadania

Jest to zadanie maturalne otwarte, które pochodzi z egzaminu maturalnego z 2020 roku poziom podstawowy, za które można było uzyskać 4 punkty. W zadaniu poruszane są takie zagadnienia jak: iloraz ciągu, wzór na n-ty wyraz ciągu geometrycznego, równanie kwadratowe.

Treść zadania:

Wszystkie wyrazy ciągu geometrycznego \( a_{n}\), określonego dla \( n\geqslant 1 \), są dodatnie. Wyrazy tego ciągu spełniają warunek \( 6a_{1}-5a_{2}+a_{3}=0 \). Oblicz iloraz \( q \) tego ciągu należący do przedziału \( \left \langle 2\sqrt{2},3\sqrt{2} \right \rangle \).

Wskazówka do zadania

Podpowiedź do zadania

Jeżeli oznaczymy przez \( q \) iloraz ciągu, to \( a_{2}=a_{1}q\,i\,a_{3}=a_{1}q^{2} \). Sprowadzi to nas do równania kwadratowego.

Więcej znajdziesz na stronie: Wzory maturalne - ciągi geometryczne oraz Wzory maturalne - funkcja kwadratowa.

kursy-maturalne-matematyka

Oceń użyteczność zadania:

Chcielibyśmy wiedzieć, jak oceniasz to zadanie pod względem użyteczności w nauce i pomocy w zrozumieniu tematu. Prosimy, nie oceniaj trudności samego zadania, ale skup się na tym, jak pomogło Ci ono w nauce.

0 votes, average: 0,00 out of 50 votes, average: 0,00 out of 50 votes, average: 0,00 out of 50 votes, average: 0,00 out of 50 votes, average: 0,00 out of 5

Liczba ocen: 0, średnia ocena: 0,00
Aby móc wystawić ocenę musisz być zalogowany.

Loading...

Ostatnio dodane na stronie

Wierzymy, że najlepszym sposobem nauki jest praktyka. Dlatego stale aktualizujemy naszą bazę zadań, abyś miał dostęp do najnowszych i najbardziej aktualnych treści. Oto kilka z naszych najnowszych zadań maturalnych, które pomogą Ci być o krok przed innymi.

Zadanie #1569
Zadanie #1569
Ciągi arytmetyczne 2019
Zadanie #1568
Zadanie #1568
Planimetria 2019
Zadanie #1567
Zadanie #1567
2019
Zadanie #1566
Zadanie #1566
2019
Zadanie #1565
Zadanie #1565
2019
Zadanie #1440
Zadanie #1440
2019